- théorème des accroissements finis
- формула конечных приращений, теорема Лагранжа
Dictionnaire polytechnique Français-Russe. 2013.
Dictionnaire polytechnique Français-Russe. 2013.
Theoreme des accroissements finis — Théorème des accroissements finis En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre deux valeurs est réalisable comme… … Wikipédia en Français
Théorème des accroissements finis — Il existe un point c où la pente de la tangente est la pente moyenne En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre … Wikipédia en Français
Théorème des accroissements finis généralisé — Théorème des accroissements finis En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre deux valeurs est réalisable comme… … Wikipédia en Français
Inégalité des accroissements finis — Théorème des accroissements finis En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre deux valeurs est réalisable comme… … Wikipédia en Français
Égalité des accroissements finis — Théorème des accroissements finis En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre deux valeurs est réalisable comme… … Wikipédia en Français
Inegalite des accroissements finis pour les fonctions a valeurs vectorielles — Inégalité des accroissements finis pour les fonctions à valeurs vectorielles La majoration des accroissements finis est une adaptation de l inégalité des accroissements finis pour des fonctions à variable réelle et à valeurs vectorielles.… … Wikipédia en Français
Inégalité Des Accroissements Finis Pour Les Fonctions À Valeurs Vectorielles — La majoration des accroissements finis est une adaptation de l inégalité des accroissements finis pour des fonctions à variable réelle et à valeurs vectorielles. Énoncé : Soit E un espace vectoriel normé, et f une fonction définie sur un… … Wikipédia en Français
Inégalité des accroissements finis pour les fonctions à valeurs vectorielles — La majoration des accroissements finis est une adaptation de l’inégalité des accroissements finis pour des fonctions à variable réelle et à valeurs vectorielles. Énoncé : Soient a < b deux réels, E un espace vectoriel normé et deux… … Wikipédia en Français
Theoreme des bornes — Théorème des bornes La fonction atteint ses bornes en c et d En mathématiques, et plus particulièrement en analyse, le théorème des bornes est un théorème qui stipule qu une fonction qui est continue sur un segment de … Wikipédia en Français
Théorème des bornes — Pour les articles homonymes, voir Théorème de Weierstrass. En mathématiques, et plus précisément en analyse réelle, le théorème des bornes ou théorème des bornes atteintes[1] ou théorème de Weierstrass stipule qu une fonction continue sur un… … Wikipédia en Français
Inégalité des accroissement finis — Théorème des accroissements finis En analyse, le théorème des accroissements finis est un corollaire du théorème de Rolle. Pour toute fonction continue et dérivable d une variable réelle, son accroissement entre deux valeurs est réalisable comme… … Wikipédia en Français